`
`dos hrcvct 5 9))
`
`off-mempéen
`
`Patent Translate
`
`Powered by EPO and Google
`
`Notice
`
`This translation is machine—generated. It cannot be guaranteed that it is intelligible, accurate, complete, reliable or
`
`fit for specific purposes. Critical decisions, such as commercially relevant or financial decisions, should not be
`
`based on machine—translation output.
`
`DESCRIPTION CN101434831
`
`The present invention relates to a low—temperature mixed refrigerant containing NO in a temperature range of
`
`180 to 220 K and a process for producing the same, wherein the low—temperature mixed refrigerant contains low
`
`boiling point refrigerant NO (R744A) and ethane (R170) One or both of trifiuoromethane (R23),
`
`hexafiuoroethane (R116), fluoromethane (R41) and carbon dioxide (R744) are physically mixed at room
`
`temperature. The invention does not destroy the ozone layer, has low greenhouse effect, and meets the
`
`environmental protection requirements. The thermal parameters are suitable and the cycle performance is
`
`excellent. The existing multi—layer low temperature class compressor can be used to optimize the design of the
`
`new working fluid system. The mixed refrigerant can be used as an alternative refrigerant in a conventional
`
`cascade refrigeration cryogenic system.
`
`
`
`
`
`
`
`ZJSfiEHEfiFEJE-EFEli4180~ ZZOKEEEfiAENOEfiEEfiV‘:%%JEE1E2&1FBAIJEEA6J%731£ iZJEE‘Zm
`
`J21???fiéJVf‘f'JAJEEfiIEIJEENO(R744I3&)?HZJ9?(R170)~ :fiEfififRB)‘ AfiZfTRllfi) fiEF'Ji‘J?
`
`(R41)
`
`
`
`
`
`
`
`
`433’]iFEF'BjZWiW,E’F?1mT%£$1EAfifiJfio ZJSfiEfiWEEZHEHE fii’ififil
`
`
`$1132, RAH1%E3,A13$&I73§5ILE, {EH@HEfiEE HxJEJEJJEEl/JEAJEEMJQFZEHWMJLLXIJF
`
`
`
`afiIJfiéfiE a 1? 1bbAil§J 1%‘3X’UTJ’WJHE’EE1HVNEE1mfififiE 3P mgfiffiflé‘fl a
`
`Low — temperature mixed refrigerant with N20 — containing cascade refrigeration system and its preparation
`method
`
`
`
`AfiN20 EI’]E§.?JV$ 365%1FE1mJ21E‘3AIJfi RE?U%}? 12
`
`Technical field
`
`12—05-201 7
`
`1
`
`
`
`The present invention belongs to the technical field of refrigeration using a cascade system, and more particularly
`
`to a low—temperature mixed refrigerant containing N20 (R744A).
`
`
`$73593}:Mflfigfififli‘Jl/‘v EVE—RWY”Fifi, EJZWL/FXZWASENZORMAIAW’JE Efifl‘géfilfifilfiéfi
`
`Ytbér‘IJfio
`
`Background technique
`
`
`
`The minimum cooling temperature achieved by the single—stage steam compression refrigeration cycle is
`
`generally 230K. When the condensing pressure is constant, a lower evaporation temperature is required, resulting
`
`in an increase in the system pressure ratio, a decrease in the gas transmission coefficient, a decrease in the cooling
`
`capacity, The efficiency of the compressor is reduced, the power consumption is increased, the exhaust
`
`temperature is increased, and the operating conditions are deteriorated. In order to achieve a reduced
`
`temperature, a multi—stage compression refrigeration system and a multi—stage refrigeration cycle system can be
`
`used. The multi—stage compression system requires a special compressor and the refrigeration system is
`
`complicated, the efficiency is not high, the cost is high and the reliability is low. The external cascade refrigeration
`
`system has been widely used in the industrial and commercial refrigeration areas due to the continuous demand
`
`for low temperature and high cooling capacity. At present, the working fluid of more cascade refrigeration system
`
`is R134a / R23, but its greenhouse effect potential (GWP) is higher, and the filling capacity is larger and the
`
`volume refrigeration is lower. In order to meet the needs of environmental protection and large cooling capacity,
`
`cascade refrigeration system working fluid toward the development of environmentally friendly natural workers.
`
`One of the key problems in the development of cascade refrigeration cycle technology is the appropriate
`
`circulating working fluid. The development of environmentally friendly, excellent thermal performance of the
`
`new low—temperature class of working fluid, for the development of cascade refrigeration cycle technoloy is
`essential.
`
`
`
`
`E3? isfifié‘fiflli/WJEHFEQEJE’JEJEE’FEJV‘M EEUJZSOK, %V%ifififi%fifii, Eftfliififlfilfififlfi
`
`
`E‘ZEEE, @fifiééfiEttififijc,
`JQEPEEI/J‘, fitfifii Bfilfififitflfi’fififil‘fiélfi, filjji‘jt
`
`,filibfifiiflfai,
`
`3136?”:3%i§JIF$JEE,
`
`
`
`iififi’flfililflc fiTIiEUB$JEEEIfl¥m EUmfi’éffifififiséfifliflwfiflfiéfiflfiffigfl
`
`-i%JV“3%§E’E%~EJ& ,fifiié/TTEE JflZZJSFEJ“ Tifi
`
`fiffifi§fih fi’fizéfiEfifig‘fifi$23!? E’JFéTfitJL,
`
`JEE 5FE§$J%%%EIJkMEZFfiJkfiJV‘QEEEITHfiE’JJfiEJEEijCI/‘iB’J’fifiikfififififlTFi/ififi
`
`
`F FFJ Efififiéffifigfi’l’gfitaJié‘fifiEEJ’JIJEjJRlea/RB, JEEEZmEfiIFJfi‘H‘E’EmWPfifiTEE, fl
`
`EEJEEKi 56W”$JW$5IJEE fiTJfiFEH’FijU/‘Eafiék, EéfiJJ/“flfif/Tfifiilfi WEHJFiflfiEfié
`
`
`:Jfififlfi‘ifi
`591‘:erfififififffifi:)fio Ffiiflifii
`fiJéfifig’FfiJl/‘UfiflfififiiEE’JfiEIflEZm,
`
`
`51%, $1ij@E‘EUE EEfififiAJEEZmXLJfi , RJTEE’FEJl/a‘flET/F Jfifi E‘Jfiifiifiéigo
`
`
`
`12—05-201 7
`
`2
`
`
`
`The composition of the composite refrigerant is closely related to the hardware of the refrigeration and the form
`
`of the system. Therefore, the mixed refrigerant is the carrier of the cooling capacity, and its inherent performance
`
`is the most fundamental factor to determine the performance of the refrigeration system.
`
`
`
`
`
`
`
`
`
`EEEEIE E’flfllfli$111111111111112111111111’11'15131111/1111E12113 361511, IJHSEEIJE
`
`1’EE1E‘E1E1EEI’1E1ZJE, EEEEHEEEEXEEJEEEEHEEWEEZJS IE
`
`The contents of the invention
`
`It is an object of the present invention to provide a low—temperature mixed refrigerant suitable for a cascade
`
`refrigeration system containing N20 (R744A) in a temperature range of 180 to 220K. In the specific
`
`concentration ratio to fully consider the high and low temperature class compressor suitable operating pressure
`
`ratio range, so that the best environmental characteristics and cycle performance.
`
`
`
`
`
`
`237E313? EJ151113 EJEWLfiEilso~220K1mEE7ENZO(R744A)E’JEE’FEJV?EEJEEEEI‘IEEIE
`
`
`
`
`EEEWEEEtEEEEEE/EEMEEMEF{151% ELE’JiEfiF kl: 111E , EEHEE'I‘EEMEEEE‘EE
`JE,
`
`The components and components of the present invention are described below. (R744A) and ethane (R170),
`
`trifluoromethane (R23), hexafluoroethane (R744A) and N20 (R744A) in the 180 ~ 220K temperature zone.
`
`R116), fluoromethane (R41), carbon dioxide (R744), or a mixture of one or both of them. The basic parameters
`
`of each component are shown in Table 1.
`
`
`
`
`
`MTXVJSEHHB’JEEEEEEL111111211 fiHEl80~220K1ECE7EN20(R744A) E’1EE1E£1EE1EE
`
`11113121?ELIE,WEEEUL:E02744A)$H21%(R170) :EEFI1* (R23).
`
`
`(R41)
`
`
`
`133’1E11311111131151E1110 EEEEEEEZJSEEIZHEWEE.
`
`/\EZ1;*E(R116). E9151
`
`
`
`(R744A) and ethane (R170), trifluoromethane $23), hexafluoro B (R744A) and N20 (R744A) in the 180 ~
`
`220K temperature zone. (R116), fluoromethane (R41), carbon dioxide (R744), or the like.
`
`
`111E E180~220K1EEA>EN20 (R744A) EI’]EE1J§H§EE11EE&1EIE, E121 EEEEW: E
`
`
`:fiEfiififlRZS)‘ x—xEZ1*(R116) E EE'1*75(R41) E11111 (R744)EPE’1—111E
`
`CR744A)$DZJ1E(R17O)\
`
`11112351.,
`
`12—05-201 7
`
`3
`
`
`
`The specific proportions of the above components (mass percentage) are:
`
`
`
`Lilfi%é£7fftfil}fi [3"] flflififl kt (E$551431) 73 :
`
`R744A/ R170 /R23 2—98 / 2—98/ 0—96% or 2—98/ 0—96 / 2—98%‘,
`
`R744A/R170/R23
`
`2—98/2—98/0—96%EjZZ—98/0—96/2—98%;
`
`R744A/R170/R116 2—98 / 2—98/0—96% or 2—98/0—96 / 12—98%;
`
`R744A/R170/R116
`
`2—98/2—98/0—96 %EjZZ—98/0—96/2—98 %;
`
`R744A/R170/R412—98/ 2—98/0—96% or 2—98/ 0—96 / 2—98%‘,
`
`R744A/R170/R41
`
`2—98/2—98/0—96%EjZZ—98/0—96/2—98%;
`
`R744A / R170 / R744 2—98 / 2—98 / 0—96% or 2—98 / 0—96 / 2—98%;
`
`R744A/R17U/R744
`
`2—98/2—98/0—96 %E‘ZZ—98/0—96/2—98 % ;
`
`R744A/ R23 / R116 2—98 / 2—98/ 0—96% or 2—98/ 0—96 / 2—98%‘,
`
`R744A/R23/R116
`
`2—98/2—98/0—96%EjZZ—98/0—96/2—98%;
`
`R744A/R23 / R41 2—98/ 2—98/0—96% or 2—98/0—96 / 2—98%;
`
`R744A/R23/R41
`
`2—98/2—98/0—96 %PjZ2—98/0—96/2—98 %;
`
`R744A/ R23 / R744 2—98 / 2—98/ 0—96% or 2—98/ 0—96 / Z—98%‘,
`
`R744A/R23/R744
`
`2—98/2—98/0—96%EZZ—98/0—96/2—98%;
`
`12—05-201 7
`
`4
`
`
`
`R744A/R116/R412—98/2—98/0—96% or 2—98/0—96 / 2—98%‘,
`
`R744A/R116/R41
`
`2—98/2—98/0—96%Pj22—98/0—96/2—98%;
`
`R744A/ R116 /R744 2—98 / 2—98 /0—96% or 2—98/ 0—96 / 2—98%;
`
`R744A/R116/R744
`
`2—98/2—98/0—96 %EZZ—98/0—96/2—98 % ;
`
`R744A / R41 / R744 2—98 / 2—98 / 0—96% or 2—98 / 0—96 / 2—98%;
`
`R744A/R41/R744
`
`2—98/2—98/0—96%EZZ—98/0—96/2—98%;
`
`The sum of the mass percentages of each group of mixed working fluids is 100%.
`
`witéfiifiééllfimlfifififi chffli’fllOO‘Vo .
`
`(R744A), ethane (R170), trifluoromethane (R23), hexafluoroethane (R116), fluoromethane (R41), and the like.
`
`), And one or both of carbon dioxide (R744) are physically mixed in a liquid phase.
`
`
`é‘ENZOE‘JEEfiéfll/a‘gfilfififiiifi‘gé‘IlfiE’Jfliflfifl‘f‘lfi,
`
`i%#fif%:4fi(R744A)$fl Zi‘kf’uallm)‘ 3%
`
`BFEOQB)‘ fi‘fizfimllfi)‘ ”fiEf'fim‘ll)‘ :fimmwn HJE‘JmiFEFEZWWE‘JW‘fiififi—Fififififfllfi
`
`
`ifi‘é‘fifl o
`
`The present invention has the following advantages and advantages
`
`
`
`2132i BEE? l/XTfifififflfifiéififi
`
`[3]
`
`Environmental performance: Table 1 shows the comparison of the environmental properties of the composite
`
`working mass of the present invention with the conventional stacked low temperature grade working fluid R23. It
`
`can be seen that the ozone depletion potential (GDP) of the present invention is the same as that of R23 (GWP)
`
`is lower than that of R23, which is in full compliance with the environmental protection requirements of the new
`
`refrigerants. However, the low temperature of the mixed refrigerant system with N20 (R744A) Can reduce
`
`greenhouse gas emissions; (2) thermal parameters: 180 ~ 220K temperature in the design conditions, the stack
`
`system of high and low temperature evaporation pressure, condensing pressure, exhaust temperature and
`
`12—05-201 7
`
`5
`
`
`
`operating pressure ratio are required to meet the system Safe operation range. In addition to the mixed working
`
`fluid containing R170 (ethane), the sliding temperature of the remaining mixed refrigerant is very small, which is
`
`a nearly azeotropic mixture, and the influence of leakage on component composition and performance is very
`
`small. (3) Cyclic performance: Under the design conditions of the invention, the COP of the system is almost
`
`close to that of the traditional working fluid R134a / R23, and the cooling capacity per unit mass and volume
`
`cooling capacity are higher than those of the traditional working fluid R134a / R23, which can reduce the charge
`
`of the system refrigerant Irrigation, with a faster cooling rate, and can meet the load requirements.
`
`
`Wfi'iéafiéz 2%1éé‘tt'.72!:fiiflfl$543153H’Jéfifu‘fiififigfifiiffifiéfilfiim H’Jfii‘fi‘fifiéfi‘] that, HIM
`
`am, ZlifififiHaiifififififiififiaomfinméfi, £97353, Tbéafififii/fiifiE; {EEé‘fi
`
`N20(R744A)H’J’Efiflwfiéfififiéfifiémfi, Eifiififimfifiafimwmfimdx, graéfiéafiifaau
`
`
`mumwxgaz. Erma/rag %flxfifii€ikffit;
`(afflififi: E180~220Ki§nl2ififil¥RT, Era/7%
`
`fifiagififiéfiifi £033. wtfijfifi. fiF/fitfiiaufiigfiiitti’aifiafifififiéfififéiéfifilil; Ziifiififl
`
`
`BatTér‘Eanzfimafiéiififii, fiéfiafilifirfigfifififidn %i&i§i§fiiflé~%,
`
`iififiwéfifmfli
`
`
`fi‘fi'l’iafiafiafiéflflflkfidn (Bffiflfififi: Efifiiflfimfifilflfi fééfi Eficopnaifnififilifi
`
`R134a/R23tfiifi, fifiififlfiém‘fifnfifflfiéflwfifijEflwééfil ER134a/R23, mmygfiamaumfi
`
`iii, Efifi‘mfi’aifitfifiifi, Efiaficifi’afifi magi.
`
`Table 1 basic parameters of the various components in the mixed refrigerant <a) >
`
`
`
`£1 ifi‘séjflfi EF géflfl: E‘Jfizlfififilq) >
`
`<Img class 2 "EMIRef‘ id = "101440259—idf0001" />
`
`<img class="EMIRef" id="101440259—idf0001" />
`
`<P>> Thermophysical properties are based on REFPROP (Lemmon et al., 2007); <b>> Refrigerant data
`
`summary (J.M. Calm et al., 2001)
`
`<a)>Thermophysical
`
`properties
`
`are
`
`based
`
`on REFPROP(Lemmon
`
`et
`
`al., 2007); <b)>Refrigera
`
`ntdata
`
`summaryG.M.Calm et
`
`al., 2001)
`
`detailed description
`
`12—05-201 7
`
`6
`
`
`
`Example 1: R744A and 40% R170 of 60% by mass fraction were subjected to physical mixing at room
`
`temperature to obtain a refrigerant.
`
`
`
`
`
`Example 2: 50% R744A, 35% R170 and 15% R23 were taken as the mass fraction and mixed as a refrigerant at
`
`room temperature.
`
`imam; Elfififiafixsm EVJR744A. 35%3‘1R170$015%E‘]R23, Efi-i‘zfifiififi WES/Eélfii’fiiafiéfl
`
`19%|] 0
`
`Example 3: R744A, 20% R170 and 45% R41, 35% by mass fraction, were physically mixed at room temperature
`
`and used as a refrigerant.
`
`$153013: §E§fi\§fifix35% EI‘JR744A. 20 % EI‘JR17025045 % EI’JR41, E‘é-u‘iETiEfi WffiiEbéEi/Eflgifiu
`
`19%|] 0
`
`Example 4: 30% R744A, 45% R170 and 25% R116 were taken at the mass fraction and were physically mixed at
`
`room temperature as the refrigerant.
`
`
`
`$115014: §E§fi\§fil30%fifiR744A. 45%H‘JR17015E125%EV‘]R116, EfiifiTflfi fibfiifi'béifl’fiflfil
`
`19%|].
`
`Example 5: 50% R744A, 35% R170 and 15% R744 were taken at the mass fraction and were physically mixed at
`
`room temperature as the refrigerant.
`
`$354715:
`
`1%? J.%53\%5IFJ£50% EI’JR744A. 35 % EI‘JR1701FE115 % EI’JR744, E'fia‘ifitififi amaaararmau
`
`mu 0
`
`Example 6: R & 1t; / RT] 8: gt; 35% R744A and 65% R23 at mass fraction were physically mixed at room
`
`temperature as the refrigerant.
`
`
`
`
`>0fit3 F?” flEH laina>3%?£1 w U1 x 33.3: 7C1 -~]t >*1II: 03 U1 c\° E 70N um El 31316all 71 (31—\\ L.1 Em
`
`7 15%/ENE ME )flfiifliér‘fiflo
`
`Example 7: R744A, 20% R23 and 35% R41, 45% by mass, were physically mixed at room temperature and used
`
`12—05-201 7
`
`7
`
`
`
`as a refrigerant.
`
`
`
`
`$116617: fifiififizfimm EI’JR744A. 20 % 541122351135 %EI’1R41 , ZEE’E’iETiEfi% fifififil’fifi’afiéflfl?
`
`%U 0
`
`Example 8: 25% R744A, 65% R23 and 10% R116 were taken at the mass fraction and physically mixed at room
`
`temperature as the refrigerant.
`
`$116618: Elfififiéfilfi2fl EI’JR744A. 65 % 351223511 10 %E’1R116, EfiifiTififi 151515413155351
`
`143351.
`
`Example 9: R & lt; / RT] 8; gt; 15% R744A, 35% R23 and 50% R744 by mass fraction were physically mixed at
`
`room temperature as the refrigerant.
`
`$116519: fififififizflm 5% EI‘JR744A. 35 % EI‘JRZfiIJ 50 % EI‘JR744, Efi-é’iETiEfi Wffifiéfii’fiflfififl
`
`16%|].
`
`Example 10: 85% R744A and 15% R116 were taken as the mass fraction and mixed as a refrigerant at room
`
`temperature.
`
`
`$116151 10; filfififiéfifixs5 % 1341R744A$n15% H’JR1 16, Efi‘ifiTififiifijfii/E%E 16794511435111.
`
`Example 11: R744A, 15% R116 and 40% R41 at 45% mass fraction were subjected to physical mixing at room
`
`temperature as a refrigerant.
`
`
`
`$155151 11 : fifififi‘fizfius % 134112744111. 15%5‘1R1165540%EI’1R41, EfitfiTEfi afiffiifi‘béEi/Eflafial
`
`1435151 .
`
`Example 12: R744A, 10% R116 and 25% R744 at a mass fraction of 65% were physically mixed at room
`
`temperature and used as a refrigerant.
`
`
`
`1%? Afifiéfifiwfi %E’~1R744A. 10%13‘1R116ffl25%El"1R744, xiii-$161153 fiWEfii/fiséfii’fifi
`
`$716131 1 2:
`
`611/5516.
`
`Example 13: R & lt; / RTI 81 gt; 15% R744A and 85% R41 at mass fraction were physically mixed at room
`
`12—05-201 7
`
`8
`
`
`
`temperature as the refrigerant.
`
`$555513:
`
`
`
`filfifififififlw‘yoHfiR744A$H85%E‘1R41, EWETH?5555545442:Ft’Ejjfifli/‘fi‘u
`
`Example 14: R744A, 25% R41 and 30% R744 at 45% mass fraction were subjected to physical mixing at room
`
`temperature as a refrigerant.
`
`$134551 14:
`
`54*”: 1545545445 % EI’JR744A\ 25% EI’JR415530% E‘JR744, Eff-$151515 545525455»EJ’Ejyé‘EU
`
`4%.
`
`Example 15: 85% R744A and 15% R744 were taken at the mass fraction and physically mixed at room
`
`temperature as the refrigerant.
`
`:QFFEWH:
`
`
`
`fifiafi‘éfifiaswo541R744A5n15%5’~1R744 Efiéi'ZETfi54515544545? J/Ejjfiéin‘U
`
`Example 16: R744A and 98% R744 were taken at 2% by mass, and were physically mixed at room temperature as
`
`a refrigerant.
`
`
`
`$155134 16: fifi§fi\fi@2% EI’JR744AfiEEJ98 % EJ‘JR744, E‘ri'a‘ifiTfifififififllfi'séfi 44553544454 a
`
`Example 17: A mixture of 98% R744A and 2% R41 at mass fraction was subjected to physical mixing at room
`
`temperature as a refrigerant.
`
`$559517:
`
`
`
`
`
`
`H
`
`fifififi‘fifl98%fifiRM4A$fl2%EJ‘JR41, Efi’ifl l‘iE’fIWEEi/ltbéEVE )fifli’“Jill
`
`Example 18: 2% R744A, 96% R744 and 2% R41 were taken at the mass fraction and physically mixed at room
`
`temperature as the refrigerant.
`
`ififififlm:
`
`
`
`
`fijxfifij‘éfil9342%EJ/JR744A\ 96%3‘1R7445H2%EJ‘]R41, EPri'ué‘ZETiEfi44J filififif’fii'flflié‘
`
`fiUD
`
`Example 19: 5% R744A, 2% R170 and 93% R41 were taken at the mass fraction and physically mixed at room
`
`temperature as the refrigerant.
`
`$555419 : fifififi‘éfilHfi‘X, EI’JR744A.
`
`
`
`
`2 % 55R170$n93 % 551241 , EfitfiTiEfi’iZJ 54555545555444
`
`12—05-201 7
`
`9
`
`
`
`fills
`
`Example 20: R744A, 1% R170 and 97% R41, 2% by mass, were physically mixed at room temperature and used
`
`as a refrigerant.
`
`$35M 20 :
`
`is? xfififilfiam EI’JR744A\
`
`
`
`1 %EI‘JR170$H97 % EI’JR41, Efit—i‘ZETiEfitf/J fifififil’fifi'flfiflfl?
`
`31“] O
`
`If the design conditions of the cascade refrigeration cycle are as follows: the condensation temperature of the high
`
`temperature stage is 40 . C, the inspiratory superheat degree is 5 ° C, the subcooling degree is 5 . C, the heat
`
`transfer temperature difference of the condensing evaporator is 5 . C, the high temperature grade refrigerant of
`
`the present invention is based on the R134a refrigerant, and the other suitable environment—friendly refrigerant
`
`may be used as the high—temperature refrigerant). The evaporation temperature at the low temperature level takes
`
`the average evaporation temperature , And with a regenerator, the subcooling is set to 5 ° C; high and low
`
`temperature compression process entropy efficiency of 75%. According to the cyclic simulation, the low
`
`temperature level mixed working fluid of N + O (R744A) with 180K and 210K temperature is prepared as an
`
`example. The parameters of the low temperature level and the cycle performance of the whole stacking system are
`as follows:
`
`
`fifiéffififlfiflfiflfifiififilflfiafifl: Eiflfifi’ifilfifififfim ° C , WELiifiUEfiS ” C, fiwlfijfl
`
`
`5 ° C , Elfiifififigfi’fltfifififififis ° C , 132%}? E14] Eifiéfifiilfafifl HR134a $U¥$Ilfifi駥fi(flfifiififfifi
`
`
`
`éfifi E14] TNWEQZJE lfijflgfiéfifiiflfifffl) ;
`{35155125294}??? Zi‘ZflEEEll/Tlfil E‘Jfiéflfi-‘Zfil JET EI’JTi’JE—ifi'iifilfi
`
`
`
`
`, 3% liliflfi , Efllé‘fiiftfifi“ C; E31135 EéfiEfififltififiifi$igyfl75% o
`tfifififlfifflfiiflfifi ,
`
`
`
`LXFU%190K$H 210K151 13% 7%N20 02744130 El") Eéfffi JET/$951EEiflifiinéiilfi fiv’lfifl , filfifi‘lfifiiifififa‘é
`
`i353
`
`fiififlfl/I‘ EéfififlfiflfififitfififinT:
`
`Table 2.190K temperature zone low temperature level operating parameters and system performance
`
`
`EEZJQOK‘ZEI Elfififiififfiéfififéfififie
`
`Table 3.190K temperature zone low temperature level operating parameters and system performance
`
`
`$3.190K‘Zfl Elfifi‘lfléfiiéfiésfififéfiifififi
`
`Table 4.190K temperature zone low temperature level operating parameters and system performance
`
`12-05—201 7
`
`10
`
`
`
`
`
`iflJQOK‘Zfl Etfifififiiififiéfifififififie
`
`Table 5.190K temperature zone low temperature level operating parameters and system performance
`
`
`$5.190K‘Zfl Elfitfléfififiéfififiéfiifififi
`
`Table 6.210 K temperature zone low temperature level operating parameters and system performance
`
`
`$6.210K‘Zfl Btfiififiififiéfififiéfififia
`
`Table 7.210 K Temperature zone low temperature level operating parameters and system performance
`
`
`
`EIZMK‘E Elfi‘lfifiififififizfififififie
`
`Table 8.210K temperature zone low temperature level operating parameters and system performance
`
`
`zesme‘Zfl Elfififiififiéfififfiéfififie
`
`Table 6.110K temperature zone low temperature level operating parameters and system performance
`
`
`$9.210K‘Zfl Elfifi‘lfléfiiéfiésfififéfiifififi
`
`12-05—201 7
`
`1 1
`
`