throbber
1
`
`DESCRIPTION
`
`DRYING DEVICE
`
`TECHNICAL FIELD
`
`[0001]
`
`The present invention relates to a drying device that dries a
`
`material
`
`to be dried by electromagnetic induction heating of a
`
`heating coil and also by air coming from an air blower.
`
`BACKGROUND ART
`
`[0002]
`
`There has been known a drying device, such as the one
`
`disclosed in Japanese Patent Laid—Open No.
`
`10—94685.
`
`This
`
`drying device, which treats as a material to be dried a blade part of
`
`an electric razor that has been cleaned with a cleansing liquid,
`
`heats this metallic blade part of the electric razor set in place by
`
`electromagnetic induction heating of a heating coil so as thereby to
`
`dry this blade part. Furthermore, in order to avoid the blade part
`
`from being excessively heated by the heating coil due to a circuit
`
`failure and the like,
`
`the drying device
`
`is provided with a
`
`temperature sensor in a housing that forms a casing of a main unit
`
`of the device, thereby to detect temperature of the blade part placed
`outside
`the housing indirectly therethr-ough
`and stop
`the
`
`electromagnetic induction heating of the heating coil when the
`
`detected temperature reaches a predetermined value or above.
`
`[0003]
`
`According to the drying device disclosed in Japanese Patent
`
`Laid—Open No. 10-94685, the blade part, which is a material to be
`
`dried, is dried only by the electromagnetic induction heating of the
`
`heating coil, and therefore dry time becomes long. Furthermore,
`
`

`

`2
`
`the temperature sensor has poor responsibility and is prone to
`
`cause measurement errors because it detects the temperature of
`
`the heated blade part indirectly through the housing.
`
`In this case,
`
`it
`
`is not possible to reliably prevent
`
`the blade part from being
`
`excessively heated by electromagnetic induction heating of the
`
`heating coil.
`
`Immediate contact of the temperature sensor with
`
`the blade part can solve the responsibility and measurement error
`
`problems, but in this case the temperature sensor is in danger of
`
`rust because it is in immediate contact with the blade part which
`
`gets wet, and furthermore,
`
`insulation between the temperature
`
`sensor and the blade part cannot be achieved.
`
`[0004]
`
`The dry time of the material to be dried can be reduced by
`
`providing, for example, an air blower for sending air toward the
`
`material to be dried that is heated by electromagnetic induction
`
`heating, but the aforementioned problem of excessive heating of the
`
`material caused when a circuit failure occurs is not yet solved, and
`
`particularly when the air blower breaks down, the temperature of
`
`the material is rapidly increased by the electromagnetic induction
`
`heating, which is dangerous.
`
`[0005]
`
`Disclosed in Japanese Patent Laid—Open No. 2003-308955'is
`
`a heating cooker using an electromagnetic induction method. This
`
`heating cooker has therein a heated member that
`
`is heated by
`
`electromagnetic induction heating of a heating coil, as means for
`
`estimating temperature of a material to be heated, thereby to detect
`
`temperature of
`
`the heated member directly by temperature
`
`detection means and prevent the material to be heated from being
`
`excessively heated by the heating coil based on the detection result.
`
`Therefore, in the case of directly detecting the temperature of the
`
`

`

`3
`
`heated member heated by electromagnetic induction heating in the
`
`same way as the material to be heated, excessive heating of the
`
`material caused by a circuit failure can be detected immediately
`
`and hence prevented. This is, however, a heating cooking device,
`
`which, of course, has neither air blower for sending air to the
`
`material to be heated nor means for reliably preventing excessive
`
`heating of the material caused when a circuit failure occurs.
`
`[0006]
`
`The present invention has been made in consideration of the
`
`foregoing conventional problems, and an object thereof is to provide
`
`a drying device that can dry a material to be dried in a short dry
`
`time by utilizing both electromagnetic induction heating of a
`
`heating coil
`
`and air
`
`from an air
`
`blower,
`
`offer
`
`improved
`
`responsibility and detection accuracy in temperature detection of
`
`the material to be dried with temperature detection means, prevent
`
`rust on the temperature detection means by keeping it from contact
`
`with the material to be heated which gets wet, achieve electrical
`
`insulation of
`
`the temperature detection means, and prevent
`
`excessive heating of the material to be heated that is caused when
`
`the air blower breaks down.
`
`DISCLOSURE OF INVENTION
`
`[0007]
`
`In order to achieve the foregoing object, the drying device
`
`according to the present invention has a heating coil 5a that heats
`
`a material to be dried (blade part 2a in an embodiment) placed on a
`
`dried material-placement part by electromagnetic induction heating,
`
`and an air blower 6 that sends air to the material to be dried. The
`
`drying device is also provided with a heated member 22 that is
`
`heated by electromagnetic induction heating of the heating coil 5a,
`
`

`

`4
`
`and temperature detection means for detecting temperature of the
`
`heated member 22.
`
`The heated member 22 is disposed at a
`
`position where the temperature thereof changes under influence of
`
`the air from the air blower 6. By providing the air blower 6, both
`
`the electromagnetic induction heating of the heating coil 5a and the
`
`air from the air blower 6 can be utilized to dry the material to be
`
`dried, and consequently dry time can be reduced.
`
`Also, by
`
`providing the heated member 22 heated by the electromagnetic
`
`induction heating of the heating coil 5a, the temperature detection
`
`means detects the temperature of the heated member 22, that is a
`
`substitute of the material to be dried, so as thereby to estimate the
`
`temperature of the material, thereby preventing the material from
`
`being excessively heated by the heating coil 5a based on the
`
`estimated temperature. Furthermore, the heated member 22 can
`
`be disposed away from the material to be dried, so that the heated
`
`member 22 and the temperature detection means for detecting the
`
`temperature thereof are not in contact with the wet material to be
`
`dried, and that they can be isolated from this material.
`
`In this
`
`case, the temperature detection means can be in immediate contact
`
`with the heated member 22 for
`
`the purpose of
`
`improving
`
`responsibility and measurement accuracy of
`
`the temperature
`
`detection. Furthermore, the heated member 22 is disposed at a
`
`position where the temperature thereof changes under the influence
`
`of the air from the air blower 6, and therefore, when the air blower
`
`6 breaks down and accordingly the blade part 2a receiving no air is
`
`heated to high temperatures by the heating coil 5a, the temperature
`
`of the heated member 22 can be increased with a temperature rise
`
`of the material to be dried. This makes it possible to detect also
`
`the temperature rise of the material due to the breakdown of the air
`
`blower 6, and based on this detection, excessive heating of the
`
`

`

`
`
`material caused by the breakdown of the air blower 6 can be
`
`5
`
`prevented.
`
`[0008]
`
`Moreover, according to the drying device of the present
`
`invention, the heated member 22 is provided between the heating
`
`coil 5a and the dried material— placement part. This means that
`
`the heated member 22 can be disposed between the heating coil 5a
`
`and the material
`
`to be dried through which a magnetic flux
`
`produced by the heating coil 5a passes,
`
`thereby preventing
`
`variations in the temperature rise of the heated member 22 that are
`
`caused by displacements thereof relative to the heating coil 5a.
`
`BRIEF DESCRIPTION OF THE DRAWINGS
`
`[0009]
`
`FIG.
`
`1
`
`is an example of an embodiment of the present
`
`invention, and is an explanatory View showing a state where an
`
`electric razor is set in a drying device.
`
`FIG. 2 is an explanatory View of the drying device in the
`
`example.
`
`FIG. 3 is a circuit diagram of an electromagnetic induction
`
`heating circuit block in the example.
`
`FIG.
`
`4
`
`shows graphs
`
`for
`
`temperature
`
`changes of a
`
`temperature fuse and a blade part in the case that the blade part is
`
`dried using the drying device in the example,
`
`in which (a)
`
`is for
`
`when an air blower is operating normally and (b) is for when the air
`
`blower is stopped.
`
`BEST MODE FOR CARRYING OUT THE INVENTION
`
`{0010]
`
`Referring to the accompanying drawings, there is shown an
`
`

`

`6
`
`embodiment of the present invention. A drying device 1, which is
`
`an example of the embodiment shown in FIGS.
`
`1
`
`to 4, dries a
`
`metallic blade part 2a provided on a head portion of a conventional
`
`hand-held electric razor 2, by utilizing electromagnetic induction
`
`heating of a heating coil 5a and air from an air blower 6.
`
`A
`
`material to be dried by the drying device 1 is the blade part 2a of
`
`the electric razor 2.
`
`[00 1 1]
`
`In addition to means for drying the blade part 2a of the
`
`electric razor 2, the drying device 1 further has means for cleaning
`
`the blade part 2a with a cleansing liquid, and can therefore be used
`
`as a washer. For example, a series of a process of cleaning the
`
`blade part 2a of the electric razor 2 with the cleansing liquid and a
`
`subsequent process of drying the cleaned blade part 2a can be done
`
`only by this dying device 1.
`
`[0012]
`
`As shown in FIG. 2, a storage recessed portion 4, which
`
`opens upward, is formed on an upper face part of a housing 3 that
`
`forms a casing of the drying device 1.
`
`In the storage recessed
`
`portion 4, the electric razor 2 can be received in such a manner
`
`that the blade part 2a thereof faces downward, as shown in FIG. 1.
`In this state, the blade part 2a of the electric (razor 2 is placed in a
`
`
`
`lower part of the storage recessed portion 4. Note that the electric
`
`razor 2 received in the storage recessed portion 4 is fixed to the
`
`housing 3 at a predetermined position, which is not shown.
`
`[0013]
`
`The storage recessed portion 4 is used as a washing tank
`
`that stores the cleansing liquid when the blade part 28. is cleaned.
`
`The blade part 2a of the electric razor 2 placed in the storage
`
`recessed portion 4 as described above is soaked in the cleansing
`
`

`

`7
`
`liquid stored in the storage recessed portion 4, and then the electric
`
`razor 2 is caused to drive the blade part 2a, so that the blade part
`
`2a of the electric razor 2 can be cleaned. Note that the drying
`
`device 1 has cleaning—liquid supply/discharge means, which is not
`
`shown, such as a pump used to supply the cleansing liquid into the
`
`storage recessed portion 4 and discharge the cleansing liquid
`
`therefrom.
`
`[0014]
`
`Also at dry time, the storage recessed portion 4 is used to
`
`receive the electric razor 2. That is, the lower part of the storage
`
`recessed portion 4 is a dried material—placement part Where the
`
`blade part 2a that is the material
`
`to be dried is placed.
`
`The
`
`following explanation will be given of the means for drying the blade
`
`part 2a of the electric razor 2.
`
`[0015]
`
`The drying device 1 has an electromagnetic induction heater
`
`5 and an air blower 6 as the means for drying the blade part 2a of
`
`the electric razor 2. The air blower 6 is disposed at an upper part
`
`of a side face of
`
`the storage recessed portion 4, and during
`
`
`
`operation thereof,
`
`it sends air from this position toward another
`
`opposite side face of the storage recessed portion 4. The air blower
`
`6 provides an air flow obliquely downward, and when it is operated
`
`in a condition where the electric razor 2 is placed in the storage
`
`recessed portion 4 as shown in FIG. 1, the air from the air blower
`
`hits the blade part 2a of the electric razor 2 or a neighborhood
`
`thereof.
`
`[0016]
`
`Meanwhile,
`
`the
`
`electromagnetic
`
`induction heater
`
`5
`
`is
`
`composed of the heating coil 5a and a core member 5b, and is
`
`disposed within the housing 3 so as to face an inner face of a
`
`

`

`bottom face part 4a of the storage recessed portion 4.
`
`8
`
`[0017]
`
`The electromagnetic induction heater 5 is provided to an
`
`electromagnetic induction heating circuit block 7 installed within
`
`the housing 3. By sending a high—frequency current about 100
`
`kHz to the heating coil 5a from the electromagnetic induction
`
`heating circuit block 7, an eddy current is induced in the blade
`
`part 2a of the electric razor 2 because the blade part 2a stays on a
`
`magnetic path of a magnetic flux produced by the heating coil 5a,
`
`and as a result, electromagnetic induction heating can be made.
`
`[0018]
`
`FIG. 3 is a circuit diagram of the electromagnetic induction
`
`heating circuit block 7. As shown in the drawing, a power source
`
`10 is connected in series, each with a resonance circuit composed
`
`of the heating coil 5a and a capacitor 11, a switching element 9
`
`composed of FETs, and a resistor 12. The power source 10 is also
`
`connected in series, each with a resistor 13 and a capacitor 14 so
`
`that the capacitor 14 is charged by electric power from the power
`
`source 10 through the resistor 13. A connecting point 15 between
`
`the resistor 13 and the capacitor 14 is connected to a gate of the
`
`switching element 9 Via a feedback winding 16 and a resistor 17.
`
`A connecting point 18 between the switching element 9 and the
`
`resistor 12 is connected to a base of a transistor 19 via a resistor
`
`21. An emitter and a collector of the transistor 19 are connected
`
`to the power source 10 and a connecting point 20 between the
`
`resistor 17 and the switching element 9, respectively. Therefore,
`
`when electric power is supplied from the power source 10,
`
`this
`
`circuit is oscillated, and thus electromagnetic induction heating of
`
`the heating coil 5a is performed. When the electric power supply
`
`is stopped, the electromagnetic induction heating of the heating coil
`
`
`
`
`
`

`

`5a is terminated.
`
`[0019]
`
`In order to dry the blade part 2a of the electric razor 2 using
`
`the drying device 1, the electric razor 2 is housed in the storage
`
`recessed portion 4
`
`in which the cleansing liquid has been
`
`discharged, then a high-frequency current is sent to the heating
`coil 5a, and the air blower 6 is started at the same time. The blade
`
`part 2a of
`
`the electric razor 2 that
`
`is placed on the dried
`
`material-placement part in the lower part of the storage recessed
`
`portion 4 is then heated to high temperatures by electromagnetic
`
`induction heating of the heating coil 5a, and at the same time the
`
`air from the air blower 6 hits the blade part 2a. Also at this time,
`
`moist air in the storage recessed portion 4 is blown off by the air
`
`from the air blower 6 and dry air always flows into the storage
`
`recessed portion 4, thereby promoting drying of the blade part 2a of
`
`the electric razor 2.
`
`[0020]
`
`In order to prevent excessive heating of the blade part 2a of
`
`the electric razor 2 by the heating coil 5a that is caused when the
`
`circuit or the air blower 6 breaks down at the dry time utilizing the
`
`electromagnetic induction heating and the air, the drying device 1
`
`is provided with excessive heating prevention means, which will be
`
`described below.
`
`[0021]
`
`In the housing 3, a metallic heated member 22 is provided
`
`as means for estimating temperature of the blade part 2a, which is
`
`a material to be dried. The heated member 22 is disposed between
`
`the heating coil 5a of the electromagnetic induction heater 5 and
`
`the bottom face part 4a of the storage recessed portion 4, and at
`
`the dry time of the blade part 2a of the electric razor 2,
`
`the
`
`

`

`10
`
`magnetic flux produced by the heating coil 5a passes through the
`
`heated member 22. This heated member 22 is disposed in contact
`
`with the inner face of the bottom face part 4a of the storage
`
`recessed portion 4 where the air from the air blower 6 hits, or
`
`disposed in the neighborhood of
`
`the bottom face part 4a.
`
`Therefore,
`
`the temperature of
`
`the heated member 22 changes
`
`depending on temperature of the bottom face part 4a of the storage
`
`recessed portion 4. Accordingly, when both the electromagnetic
`
`induction heater 5 and the air blower 6 are activated for drying but
`
`the air from the air blower 6 does not hit the bottom face part 4a of
`
`the storage recessed portion 4 for some reasons, this affects the
`
`heated member 22, which means that
`
`the temperature thereof
`
`increases higher compared to the case that the air blower 6 is
`
`operating normally.
`
`[0022]
`
`Between the heated member 22 disposed on the inner face of
`
`the bottom face part 4a and the heating coil 5a of
`
`the
`
`electromagnetic induction heater 5, a temperature fuse 23 is
`
`provided as temperature detection means, which is in immediate
`
`contact with the heated member 22 and is thermally connected
`
`thereto.
`
`Furthermore, when the temperature fuse 23 is heated
`
`above a predetermined temperature as the heated member 22 is
`
`heated, a controller 24 is designed to terminate the electromagnetic
`
`induction heating of the blade part 2a with the heating coil 5a
`
`based on information fed from the temperature fuse 23.
`
`[0023]
`
`Therefore, when a high—frequency current is send to the
`
`heating coil 5a to dry the blade part 2a of the electric razor 2, the
`
`heated member 22 is heated, as in the same manner as the blade
`
`part 2a, by electromagnetic induction heating of the heating coil 5a
`
`

`

`11
`
`and the temperature of the heated member 22 rises. When the
`
`electromagnetic induction heating of
`
`the heating coil 5a is
`
`terminated,
`
`the temperature of
`
`the heated member 22 falls.
`
`Therefore, when the blade part 2a is heated to high temperatures
`
`by the heating coil 5a because a circuit failure or the like occurs at
`
`the dry time, the heated member 22 is heated to high temperatures
`
`by the electromagnetic induction heating of the heating coil 5a, and
`
`accordingly the
`
`temperature
`
`fuse
`
`23
`
`is heated above
`
`the
`
`predetermined temperature.
`
`In response thereto, the controller 24
`
`terminates the electromagnetic induction heating of the heating coil
`
`5a thereby to prevent
`
`the blade part 2a from being excessively
`
`heated.
`
`[0024]
`
`The heated member 22 is only required to be disposed where
`
`the magnetic flux of the heating coil 5a passes, so that the heated
`
`member 22 and the temperature fuse 23 for estimating the
`
`temperature of the blade part 2a can be placed away from the blade
`
`part 2a. Therefore, by disposing the heated member 22 and the
`
`temperature fuse 23 inside the housing 3 as described earlier, the
`
`cleansing liquid does not
`
`splash over
`
`them,
`
`and electrical
`
`insulation between them and the blade part 2a can be achieved by
`
`the housing 3.
`
`In this case,
`
`the temperature fuse 23 can be
`
`disposed in immediate contact with the heated member 22 that is
`
`heated directly by electromagnetic induction heating of the heating
`
`coil 5a, which makes it possible to promptly detect excessive
`
`heating of the blade part 2a of the electric razor 2, thereby reliably
`
`preventing the blade part 2a from being excessively heated by
`
`electromagnetic induction heating.
`
`[0025]
`
`FIG. 4(a)
`
`is a graph showing temperature changes of the
`
`

`

`12
`
`temperature fuse 23 and the blade part 2a during drying of the
`
`blade part 2a using the drying device 1
`
`in a state where the air
`
`blower 6 is operating normally, and FIG. 4(b) is a graph showing
`
`temperature changes of the temperature fuse 23 and the blade part
`
`2a during drying of the blade part 2a using the drying device 1 in a
`
`state where the air blower 6 is being stopped.
`
`In FIGS. 4(a) and
`
`4(b), lines A and B denote temperature changes of the temperature
`
`fuse 23 and the blade part 2a, respectively.
`
`[0026]
`
`As apparent from these graphs, when no air hits the blade
`
`part 2a because the air blower 6 stops, and consequently the blade
`
`part 2a is heated to high temperatures by the heating coil 5a, the
`
`temperature of the heated member 22 rises. This is because the
`
`heated member 22 is disposed just below the bottom face part 4a of
`
`the storage recessed portion 4 where the air from the air blower 6
`
`hits.
`
`Thus, by providing the heated member 22 at a position
`
`where the temperature thereof changes under the influence of the
`
`air from the air blower 6, the temperature of the heated member 22
`
`can be increased as the blade part 2a is heated to high temperature
`
`by the heating coil 5a because the air blower 6 breaks down and
`
`then no air hits the blade part 2a.
`
`Also in this case,
`
`the
`
`temperature
`
`fuse
`
`23
`
`is
`
`heated
`
`above
`
`the
`
`predetermined
`
`temperature, and accordingly the controller 24 terminates the
`
`electromagnetic induction heating of the heating coil 5a. Therefore,
`
`according to the present invention, also when the air blower 6
`
`breaks down,
`
`it is possible to prevent the blade part 2a of the
`
`electric razor 2 from being heated excessively.
`
`[0027]
`
`When the air from the air blower 6 hits the bottom face part
`
`4a of the storage recessed portion 4, the temperature of the heated
`
`

`

`
`
`13
`
`member 22 falls. This heated member 22 is provided to the inside
`
`of the housing 3 that the air from the air blower 6 does not hit
`
`directly, and therefore a temperature falling rate of the heated
`
`member 22 which is observed when the air is stopped is smaller
`
`than that of the blade part 2a of the electric razor 2 that directly
`
`receives
`
`the air.
`
`This enables
`
`the use of,
`
`for example, a
`
`temperature fuse 23 whose operating temperature is high, and thus
`
`eliminates the need of using a special
`
`temperature fuse whose
`
`operating temperature is below 80°C.
`
`Furthermore, operational
`
`errors of the temperature fuse 23 can be prevented reliably.
`
`[0028]
`
`In this embodiment,
`
`the heated member 22 is disposed
`
`between the heating coil 5a and the dried material—placement part,
`
`so that the heated member 22 can be placed between the heating
`
`coil 5a and the material to be dried through which the magnetic
`
`flux produced by the heating coil 5a passes,
`
`thereby preventing
`
`variations in the temperature rise of the heated member 22 that are
`
`caused by displacements thereof relative to the heating coil 5a.
`
`[0029]
`
`Note that the embodiment has been handled the case that
`
`the temperature detection means is the temperature fuse 23, but
`
`the temperature detection means can be a temperature sensor or
`
`other temperature detection devices.
`
`Furthermore,
`
`the present
`
`invention is applicable not only to the drying device 1 for drying the
`
`blade part 2a of the electric razor 2, but also to other drying devices
`
`which have already been known.
`
`INDUSTRIAL APPLICABILITY
`
`[0030]
`
`According to the drying device of the present invention, both
`
`

`

`14
`
`electromagnetic induction heating of a heating coil and air from an
`
`air blower can be utilized to dry a material to be dried, and also dry
`
`time can be reduced. Furthermore, in temperature detection of the
`
`material
`
`to
`
`be
`
`dried with
`
`temperature
`
`detection means,
`
`responsibility and detection accuracy thereof can be improved.
`
`Moreover,
`
`the temperature detection means can be kept
`
`from
`
`contact with the wet material to be dried thereby to prevent rust
`
`and achieve electrical
`
`insulation of
`
`the temperature detection
`
`means. Furthermore,
`
`it is possible to reliably prevent excessive
`
`heating of the material
`
`to be dried which occurs when the air
`
`blower breaks down.
`
`[0031]
`
`In addition, according to the present invention, it is possible
`
`to stabilize the temperature rise of a heated member heated by the
`
`heating coil, which enables accurate estimation of the temperature
`
`of the material to be dried.
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket